• starman2112@sh.itjust.works
      link
      fedilink
      arrow-up
      1
      ·
      edit-2
      11 months ago

      If you really wanna see a bloodbath, watch this:

      You know that a couple has two children. You go to the couple’s house and one of their children, a young boy, opens the door. What is the probability that the couple’s other child is a girl?

        • starman2112@sh.itjust.works
          link
          fedilink
          arrow-up
          2
          ·
          edit-2
          11 months ago

          Oops, I changed it to a more unintuitive one right after you replied! In my original comment, I said “you flip two coins, and you only know that at least one of them landed on heads. What is the probability that both landed on heads?”

          And… No! Conditional probability strikes again! When you flipped those coins, the four possible outcomes were TT, TH, HT, HH

          When you found out that at least one coin landed on heads, all you did was rule out TT. Now the possibilities are HT, TH, and HH. There’s actually only a 1/3 chance that both are heads! If I had specified that one particular coin landed on heads, then it would be 50%

          • Hacksaw@lemmy.ca
            link
            fedilink
            arrow-up
            6
            ·
            edit-2
            11 months ago

            No. It’s still 50-50. Observing doesn’t change probabilities (except maybe in quantum lol). This isn’t like the Monty Hall where you make a choice.

            The problem is that you stopped your probably tree too early. There is the chance that the first kid is a boy, the chance the second kid is a boy, AND the chance that the first kid answered the door. Here is the full tree, the gender of the first kid, the gender of the second and which child opened the door, last we see if your observation (boy at the door) excludes that scenario.

            1 2 D E


            B B 1 N

            B G 1 N

            G B 1 Y

            G G 1 Y

            B B 2 N

            B G 2 Y

            G B 2 N

            G G 2 Y

            You can see that of the scenarios that are not excluded there are two where the other child is a boy and two there the other child is a girl. 50-50. Observing doesn’t affect probabilities of events because your have to include the odds that you observe what you observed.

            • Zagorath@aussie.zone
              link
              fedilink
              arrow-up
              0
              ·
              11 months ago

              I was about to reply to you with a comment that started with “oh shit you’re right!” But as I wrote it I started rethinking and I’m not sure now.

              Because I actually don’t think it matters whether we’re BB1 or BB2. They’re both only one generation of the four possible initial states. Which child opens the door is determined after the determination of which child is which gender. Basically, given that they have two boys, we’re guaranteed to see a boy, so you shouldn’t count it twice.

              Still, I’m now no where near as confident in my answer as I was a moment ago. I might actually go and write the code to perform the experiment as I outlined in an earlier comment (let me know if you think that methodology is flawed/biased, and how you think it should be changed) to see what happens.

              • Hacksaw@lemmy.ca
                link
                fedilink
                arrow-up
                0
                ·
                11 months ago

                That’s a great idea let me know how it turns out. If you randomly pick the genders and randomly pick who opens the door, I think it will be 50-50. With these kinds of things they can get pretty tricky. Just because an explanation seems to make sense doesn’t mean it’s right so I’m curious!

                • Zagorath@aussie.zone
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  11 months ago

                  I put it together. Here’s the code I wrote in Python.

                  import random
                  
                  genders = ['boy', 'girl']
                  
                  def run():
                      other_child_girls = 0
                      for i in range(10000):
                          other_child = get_other_child()
                          if other_child == 'girl':
                              other_child_girls += 1
                      print(other_child_girls)
                  
                  def get_other_child():
                      children = random.choices(genders, k=2)
                      first_child_index = random.randint(0, 1)
                      first_child = children[first_child_index]
                      if first_child == 'boy':
                          other_child_index = (first_child_index + 1) % 2
                          return children[other_child_index]
                      # Recursively repeat this call until the child at the door is a boy
                      # (i.e., discard any cases where the child at the door is a girl)
                      return get_other_child()
                  
                  if __name__ == '__main__':
                      run()
                  

                  And it turns out you were right. I ran it a few times and got answers ranging from 4942 to 5087, i.e., clustered around 50%.

          • Floey@lemm.ee
            link
            fedilink
            arrow-up
            1
            ·
            edit-2
            8 months ago

            This is a ridiculous argument when taken to the extreme. Say you have three bags. Bag A contains 100 blue marbles. Bag B contains 99 blue marbles and 1 red marble. Bag C contains 100 red marbles. You reach into a random bag and draw a red marble. You’ve only eliminated bag A. Would you say it is a 50-50 whether you are left with a bag now containing 99 blue marbles or 99 red marbles? No, the fact that you drew a red marble tells you something about the composition of the bag you drew from. The odds that you drew out of bag B is 1/101, the total number of red marbles in bag B divided by the total number of red marbles across all bags. The odds that you are dealing with bag C is 100x that.

            Now let’s say you have 4 bags. BB, BR, BR, and RR. You draw an R. There is a 50% chance you are dealing with bag 2 or 3 because together they contain 2 out of 4 R. There is also a 50% chance you are dealing with bag 4. So it is equally likely that you draw either color of marble if you take the remaining marble out of the bag you randomly selected despite there being twice as many BR bags as RR bags.

      • Zagorath@aussie.zone
        link
        fedilink
        arrow-up
        0
        ·
        11 months ago

        This is basically Monty Hall right? The other child is a girl with 2/3 probability, because the first one being a boy eliminates the case where both children are girls, leaving three total cases, in two of which the other child is a girl (BG, GB, BB).

  • mindbleach@sh.itjust.works
    link
    fedilink
    arrow-up
    2
    ·
    11 months ago

    Different compilers have robbed me of all trust in order-of-operations. If there’s any possibility of ambiguity - it’s going in parentheses. If something’s fucky and I can’t tell where, well, better parenthesize my equations, just in case.

    • linuxdweeb@lemm.ee
      link
      fedilink
      arrow-up
      1
      ·
      11 months ago

      This is best practice since there is no standard order of operations across languages. It’s an easy place for bugs to sneak in, and it takes a non-insignificant amount of time to debug.

      • mindbleach@sh.itjust.works
        link
        fedilink
        arrow-up
        3
        ·
        8 months ago

        That’s the same ambiguity, numbnuts. Your added parentheses do nothing. If you wanted to express the value 8 over the value 2*(1+3), you should write 8/(2*(1+3)). That is how you eliminate other valid interpretations.

        As illustration of why there are competing valid interpretations: what human being is going to read “8/2 * (1+3)” as anything but 4*4? Those spaces create semantic separation. But obviously most calculators don’t have a spacebar, any more than they have to ability to draw a big horizontal line and place 2(1+3) underneath it. Ambiguous syntax for expressing mathematics is not some foundation-shaking contradiction. It’s a consequence of limitations in how we express even the most concrete ideas.

        “The rules of math” you keep spamming about are not mathematical proofs - they’re arbitrary decisions made by individuals and organizations. In many cases the opposite choice would be equally sensible. Unlike the innate equivalence of multiplication and division, where dividing by two and multiplying by half are interchangeable. Same with addition and subtraction.

        Do you want to argue that 8 - (2) + (1+3) should be 2?

        • Your added parentheses do nothing

          So you’re saying Brackets aren’t first in order of operations? What do you think brackets are for?

          If you wanted to express the value 8 over the value 2*(1+3), you should write 8/(2*(1+3))

          or, more correctly 8/2(1+3), as per the rules of Maths (we never write unnecessary brackets).

          That is how you eliminate other valid interpretations

          There aren’t any other valid interpretations. #MathsIsNeverAmbiguous

          what human being is going to read “8/2 * (1+3)” as anything but 4*4

          Yes, that’s right, but 8/2x(1+3) isn’t the same as 8/2(1+3). That’s the mistake that a lot of people make - disobeying The Distributive Law.

          Those spaces

          …have no meaning in Maths. The thing that separates the Terms, in your example, is the multiply. i.e. an operator.

          most calculators don’t have a spacebar

          …because it’s literally meaningless in Maths.

          any more than they have to ability to draw a big horizontal line and place 2(1+3) underneath it

          Some of them can actually.

          “The rules of math” you keep spamming about are not mathematical proofs

          You should’ve read further on then. Here’s the proof.

          they’re arbitrary decisions made by individuals

          No, they’re a natural consequence of the way we have defined operators. e.g. 2x3=2+2+2, therefore we have to do multiplication before addition.

          In many cases the opposite choice would be equally sensible

          2+2x3=2+6=8 the correct answer, but if I do addition first…

          2+2x3=4x3=12, which is the wrong answer. How is getting the wrong answer “equally sensible” as getting the right answer?

          Do you want to argue that 8 - (2) + (1+3) should be 2?

          No, why would I do that? 8-(2+1+3) does equal 2 though.

          • mindbleach@sh.itjust.works
            link
            fedilink
            arrow-up
            2
            ·
            8 months ago

            You are a smug idiot.

            8/2(1+3) is exactly the sort of thing programs love to misinterpret. I don’t give a shit what “rules of math” you insist are super duper universal, or what “we” do. They are not reliable. Clear parentheses are. Insisting you’re correct is not relevant. You stumbled into a pragmatic issue with grand philosophical assurances that aren’t even sound.

            Yes, that’s right, but 8/2x(1+3) isn’t the same as 8/2(1+3).

            … no, that’s fucking stupid.

            Some of them can actually.

            Hence the word “most.” Your cocksure months-late manic episode across this thread is the most “akshually” thing I have ever witnessed.

            Here’s the proof.

            You dense bastard! That’s a category error! You can’t prove that 2(3) means something different from 2*3. It’s only convention! It’s a thing we made up, unlike actual mathematical proofs, which are laws of the universe. If everyone disagreed with that then it would stop being true. That’s not a sentence you can say about anything that has a proof, instead of some evidence.

            You keep talking about “rules of math” when what you mean is rules of this particular notation. Reverse Polish Notation doesn’t have this issue, at all. Distribution is not even possible in RPN. So however important you think it might be… it’s not universal.

            [Those spaces] have no meaning in Maths.

            THAT’S THE POINT, NUMBNUTS. It’s semantic separation that human beings will read in for context. Which they need, because some grammars have ambiguities, which can only be resolved by convention. Like how -6 is a number, and you can add or multiply -6, but 1 + -6 looks kinda weird, -6(3) is fine, and (3) -6 is asking for trouble.

            The convention overwhelmingly used in computation is that parentheses are resolved first. Nothing is distributed over them - they are evaluated, and then used. In exactly the same way that multiplication can be treated as repeated addition, operations on parentheticals are treated as operations on equations reduced to scalars. It doesn’t fucking mean anything, to say 8/2*(1+3) is different from 8/2(1+3), because in the notation used by coders, they both become 8/2*4.

            You might as well barge in pick a fight with N=N+1.

            • You are a smug idiot

              That’s your colloquialism for Maths teachers. Ok, got it.

              8/2(1+3) is exactly the sort of thing programs love to misinterpret.

              Programs, written by programmers, who have forgotten the rules of Maths.

              that’s fucking stupid

              So you’re saying the rules of Maths are stupid. Got it.

              You can’t prove that 2(3) means something different from 2*3. It’s only convention!

              No, it’s a rule of Maths - it’s literally the opposite operation to factorising.

              It’s a thing we made up

              Nothing in Maths is made up. It’s based on our observations of how things work.

              mathematical proofs, which are laws of the universe

              Now you’re getting it.

              this particular notation

              …which is Maths.

              Reverse Polish Notation doesn’t have this issue, at all

              Neither does infix notation. All notations have to obey the rules of Maths, since the rules of Maths are universal.

              Distribution is not even possible in RPN

              Second hit in my Google results…

              (3) -6 is asking for trouble

              It’s -3 - where’s the trouble?

              say 8/2*(1+3) is different from 8/2(1+3), because in the notation used by coders, they both become 8/2*4

              Welcome to why almost every single e-calculator is wrong (as opposed to handheld calculators) - MathGPT gets it right.

              • mindbleach@sh.itjust.works
                link
                fedilink
                arrow-up
                2
                ·
                8 months ago

                Nothing in Maths is made up. It’s based on our observations of how things work.

                The notation and syntax of how we express that, is made-up. There’s multiple options. There’s disagreements. Fuck me sideways, you are a teacher, and you can’t figure out how being off-topic works?

                Evidently not, as you flip between ‘this particular notation is the notation!’ to ‘of course other notations exist’ and suffer zero cognitive dissonance. By capital-M “Maths,” do you mean the notation on paper, or the underlying laws-of-reality stuff? It depends! It’s ambiguous and requires context, or maybe you’re just factually wrong at least one of those times, and either way, that means it’s plainly not THE SAME KIND OF THING as the laws-of-reality stuff.

                It’s a category error. You can prove that the word prove isn’t spelled proove, for some reason, but the heavens would not bend the other direction if that changed. We could swap square braces and parenthesis and nothing would be different. We could use the glyph “&” instead of “7.” These details are mutable and completely fucking arbitrary. But then & - 6 = 1, and you could never proove otherwise.

                Second hit in my Google results…

                Shows B being subtracted from A before that value is multiplied by C. It’s not distribution. It’s evaluating the parenthetical.

                It’s -3 - where’s the trouble?

                The fact it’s 3 and -6, not 3 - 6. Which is why I explicitly mentioned that -6 was a number, and used two other examples with -6. I wasn’t just making conversation. Jesus fucking Christ, a state trusts you with the education of children.

                According to the textbook you’re now screenshotting at people, A(B) and (B)A are both correct - yes? They’re both valid? And spaces have no impact on an equation? And writing equations like -6 + 1 are fine, instead of (-6) + 1, since you don’t want needless parentheses?

                • ‘this particular notation is the notation!’ to ‘of course other notations exist’

                  The notation for division in some countries is the obelus, in other countries it’s a colon. Whatever country you’re in, the notation for that country is the notation for division (be it an obelus or a colon).

                  Maths,” do you mean the notation on paper, or the underlying laws-of-reality stuff

                  Both! Whatever notation your country uses, all the rules for Maths and use of that Maths notation are defined.

                  It’s ambiguous

                  No, it’s not.

                  It’s not distribution. It’s evaluating the parenthetical

                  And Distribution applies to brackets/parentheses where they have a coefficient. In other words, same same.

                  it’s 3 and -6, not 3 - 6

                  You didn’t put a comma between 3 and -6, so no, it’s not 3 and -6, it’s 3-6. That’s what you wrote, that’s what it is.

                  a state trusts you with the education of children

                  Related - have you noticed how children never get this wrong? It’s only adults who’ve forgotten the rules of Maths who get it wrong.

                  According to the textbook you’re now screenshotting at people, A(B) and (B)A are both correct - yes? They’re both valid? And spaces have no impact on an equation? And writing equations like -6 + 1 are fine, instead of (-6) + 1, since you don’t want needless parentheses?

                  Yes (though the latter is unconventional), yes (though the latter is unconventional), yes, yes (though unconventional - 1-6 is the conventional way to write that), yes, yes.

    • Crozekiel@lemmy.zip
      link
      fedilink
      arrow-up
      0
      ·
      11 months ago

      This is the way. It’s an intentionally ambiguously written problem to cause this issue depending on how and where you learned order of operations to cause a fight.

        • Crozekiel@lemmy.zip
          link
          fedilink
          English
          arrow-up
          2
          ·
          7 months ago

          Please see this section of Wikipedia on the order of operations.

          The “math” itself might not be ambiguous, but how we write it down absolutely can be. This is why you don’t see actual mathematicians arguing over which one of these calculators is correct - it is not either calculator being wrong, it is a poorly constructed equation.

          As for order of operations, they are “meant to be” the same everywhere, but they are taught differently. US - PEMDAS vs UK - BODMAS (notice division and multiplication swapped places). Now, they will say they are both given equal priority, but you can’t actually do all of the multiplication and division at one time. Some are taught to simply work left to right, while others are taught to do multiplication first; but we are all taught to use parentheses correctly to eliminate ambiguity.

          • Please see this section of Wikipedia on the order of operations

            That section is about multiplication, and there isn’t any multiplication in this expression.

            The “math” itself might not be ambiguous, but how we write it down absolutely can be

            Not in this case it isn’t. It has been written in a way which obeys all the rules of Maths.

            This is why you don’t see actual mathematicians arguing over which one of these calculators is correct

            But I do! I see University lecturers - who have forgotten their high school Maths rules (which is where this topic is taught) - arguing about it.

            it is not either calculator being wrong

            Yes, it is. The app written by the programmer is ignoring The Distributive Law (most likely because the programmer has forgotten it and not bothered to check his Maths is correct first).

            US - PEMDAS vs UK - BODMAS

            Those aren’t the rules. They are mnemonics to help you remember the rules

            notice division and multiplication swapped places

            Yes, that’s right, because they have equal precedence and it literally doesn’t matter which way around you do them.

            you can’t actually do all of the multiplication and division at one time

            Yes, you can!

            Some are taught to simply work left to right

            Yes, that’s because that’s the easy way to obey the actual rule of Left associativity.

            we are all taught to use parentheses correctly to eliminate ambiguity

            Correct! So 2(2+2) unambiguously has to be done before the division.

            • Crozekiel@lemmy.zip
              link
              fedilink
              English
              arrow-up
              1
              ·
              7 months ago

              Just out of curiosity, what is the first 2 doing in “2(2+2)”…? What are you doing with it? Possibly multiplying it with something else?

              there isn’t any multiplication in this expression.

              Interesting.

              I really hope you aren’t actually a math teacher, because I feel bad for your students being taught so poorly by someone that barely has a middle school understanding of math. And for the record, I doubt anyone is going to accept links to your blog as proof that you are correct.

              • Just out of curiosity, what is the first 2 doing in “2(2+2)”…? What are you doing with it? Possibly multiplying it with something else?

                Distributing it, as per The Distributive Law. Even Khan Academy makes sure to not call it “multiplication”, because that refers literally to multiplication signs., which, as I said, there aren’t any in this expression - only brackets and division (and addition within the brackets).

                I feel bad for your students

                My students are doing well thanks.

                I doubt anyone is going to accept links to your blog as proof that you are correct

                You mean the blog that has Maths text book references, historical Maths documents, and proofs? You know proofs are always true, right? But thanks for the ad hominem anyway, instead of any actual proof or evidence to support your own claims.

  • Queue@lemmy.blahaj.zone
    link
    fedilink
    English
    arrow-up
    2
    ·
    edit-2
    8 months ago

    For anyone like me who has math as their worst subject: PEMDAS.

    PEMDAS is an acronym used to mention the order of operations to be followed while solving expressions having multiple operations. PEMDAS stands for P- Parentheses, E- Exponents, M- Multiplication, D- Division, A- Addition, and S- Subtraction.

    So we gotta do it in the proper order. And remember, if the number is written like 2(3) then its multiplication, as if it was written 2 x 3 or 2 * 3.

    So we read 8/2(2+2) and need to do the following;

    • Read the Parentheses of (2 + 2) and follow the order of operations within them, which gets us 4.
    • Then we do 2(4) which is the same as 2 x 4 which is 8
    • 8 / 8 is 1.

    The answer is 1. The old calculator is correct, the phone app which has ads backed into it for a thing that all computers were invented to do is inaccurate.

    • Turns out I’m wrong, but I haven’t been told how or why. I’m willing to learn if people actually tell me

      Well, I don’t know what you said originally, so I don’t know what it is you were told was wrong - 1 or 16? 😂 The correct answer is 1.

      Anyhow, I have an order of operations thread which covers literally everything there is to know about it (including covering all the common mistakes and false claims made by some). It includes textbook references, historical Maths documents, worked examples, proofs, memes, the works! I’m a high school Maths teacher/tutor - I’ve taught this topic many times.

    • Coreidan@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      11 months ago

      PEMDAS evaluated from left to right. If you followed that you’d get 16. 1 is ignoring left to right.

    • amtwon@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      11 months ago

      not to be That Guy, but the phone is actually correct… multiplication and division have the same precedence, so 8 / 2 * 4 should give the same result as 8 * 4 / 2, ie 16

    • a_fine_hound@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      11 months ago

      Well that’s just wrong… Multiplication and division have equal priorities so they are done from left to right. So: 8 / 2 * (2 + 2)=8 / 2 * 4=4 * 4=16

        • Correct! 2(2+2) is a single term - subject to The Distributive Law - and 2x(2+2) is 2 terms. Those who added a multiply sign there have effectively flipped the (2+2) from being in the denominator to being in the numerator, hence the wrong answer.

          But it’s not called “implicit multiplication” - it’s Terms and/or The Distributive Law which applies (and they’re 2 separate rules, so you cannot lump them together as a single rule).

      • nutcase2690@lemmy.dbzer0.com
        link
        fedilink
        arrow-up
        0
        ·
        11 months ago

        Not quite, pemdas can go either from the left or right (as long as you are consistent) and division is the same priority as multiplication because dividing by something is equal to multiplying by the inverse of that thing… same as subtraction being just addition but you flip the sign.

        8×1/2=8/2 1-1=1+(-1)

        The result is 16 if you rewrite the problem with this in mind: 8÷2(2+2)=8×(1/2)×(2+2)

        • Omega_Jimes@lemmy.ca
          link
          fedilink
          arrow-up
          0
          ·
          11 months ago

          I’ve never had anyone tell me operations with the same priority can be done either way, it’s always been left to right.

          • I’ve never had anyone tell me operations with the same priority can be done either way, it’s always been left to right

            It’s left to right within each operator. You can do multiplication first and division next, or the other way around, as long as you do each operator left to right. Having said that, you also can do the whole group of equal precedence operators left to right - because you’re still preserving left to right for each of the two operators - so you can do multiplication and division left to right at the same time, because they have equal precedence.

            Having said that, it’s an actual rule for division, but optional for the rest. The actual rule is you have to preserve left-associativity - i.e. a number is associated with the sign to the left of it - and going left to right is an easy way to do that.

          • nutcase2690@lemmy.dbzer0.com
            link
            fedilink
            arrow-up
            0
            ·
            11 months ago

            I’ve always heard it that way too but I think it is for consistency with students, imo Logically, if you are looking at division = multiplying by inverse and subtraction = adding the negative, you should be able to do it both ways. Addition and multiplication are both associative, so we can do 1+2+3 = (1+2)+3 = 1+(2+3) and get the same answer.

            • ReveredOxygen@sh.itjust.works
              link
              fedilink
              English
              arrow-up
              0
              ·
              11 months ago

              But subtraction and division are not associative. Any time you work on paper, 2 - 2 - 2 would equal -2. That is, (2-2)-2=0-2=-2. If you evaluate right to left, you get 2-2-2=2-(2-2)=2-0=2

              • nutcase2690@lemmy.dbzer0.com
                link
                fedilink
                arrow-up
                1
                ·
                11 months ago

                Correct, subtraction and division are not associative. However, what is subtraction if not adding the opposite of a number? Or division if not multiplying the inverse? And addition and multiplication are associative.

                2-2-2 can be written as 2 + (-2) + (-2) which would equal -2 no matter if you solve left to right, or right to left.

                In your example with the formula from right to left, distributing the negative sign reveals that the base equation was changed, so it makes sense that you saw a different answer.

                2 - (2 - 2) = 2 + ((-2) + 2) = 2

    • CaptDust@sh.itjust.works
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      11 months ago

      Uh… no the 1 is wrong? Division and multiplication have the same precedence, so the correct order is to evaluate from left to right, resulting in 16.

    • nutcase2690@lemmy.dbzer0.com
      link
      fedilink
      arrow-up
      0
      ·
      11 months ago

      The problem with this is that the division symbol is not an accurate representation of the intended meaning. Division is usually written in fractions which has an implied set of parenthesis, and is the same priority as multiplication. This is because dividing by a number is the same as multiplying by the inverse, same as subtracting is adding the negative of a number.

      8/2(2+2) could be rewritten as 8×1/2×(2+2) or (8×(2+2))/2 which both resolve into 16.

      • Division is usually written in fractions

        Division and fractions aren’t the same thing.

        fractions which has an implied set of parenthesis

        Fractions are explicitly Terms. Terms are separated by operators (such as division) and joined by grouping symbols (such as a fraction bar), so 1÷2 is 2 terms, but ½ is 1 term.

        8/2(2+2) could be rewritten as 8×1/2×(2+2)

        No, it can’t. 2(2+2) is 1 term, in the denominator. When you added the multiply you broke it into 2 terms, and sent the (2+2) into the numerator, thus leading to a different answer. 8/2(2+2)=1.

      • Zagorath@aussie.zone
        link
        fedilink
        arrow-up
        1
        ·
        11 months ago

        You left out the way it can be rewritten which most mathematicians would actually use, which is 8/(2(2+2)), which resolves to 1.

    • hallettj@beehaw.org
      link
      fedilink
      English
      arrow-up
      0
      ·
      11 months ago

      The problem is that the way PEMDAS is usually taught multiplication and division are supposed to have equal precedence. The acronym makes it look like multiplication comes before division, but you’re supposed to read MD and as one step. (The same goes for addition and subtraction so AS is also supposed to be one step.) It this example the division is left of the multiplication so because they have equal precedence (according to PEMDAS) the division applies first.

      IMO it’s bad acronym design. It would be easier if multiplication did come before division because that is how everyone intuitively reads the acronym.

      Maybe it should be PE(M/D)(A/S). But that version is tricky to pronounce. Or maybe there shouldn’t be an acronym at all.

  • Pavidus@lemmy.world
    link
    fedilink
    arrow-up
    2
    ·
    11 months ago

    There’s quite a few calculators that get this wrong. In college, I found out that Casio calculators do things the right way, are affordable, and readily available. I stuck with it through the rest of my classes.

  • linuxdweeb@lemm.ee
    link
    fedilink
    arrow-up
    1
    ·
    11 months ago

    Please Excuse My Dear Aunt Sally, she downloaded a shitty ad-infested calculator from the Google Play store.

  • I Cast Fist@programming.dev
    link
    fedilink
    English
    arrow-up
    1
    ·
    11 months ago

    The problem is that there’s no “external” parentheses to really tell us which is right: (8 / 2) * 4 or 8 / (2 * 4)

    The amount of comments here shows how much debate this “simple” thing generates

  • cRazi_man@lemm.ee
    link
    fedilink
    arrow-up
    1
    ·
    11 months ago

    Ah damn it. It took me ages to find a calculator app that fits my needs… And now I find out it works like the one on the right.

  • Zummy@lemmy.world
    link
    fedilink
    arrow-up
    1
    ·
    11 months ago

    I don’t understand why people say Maths. Math encompasses every single type of Math. Maths is just wrong.

  • subignition@kbin.social
    link
    fedilink
    arrow-up
    1
    ·
    11 months ago

    […] the question is ambiguous. There is no right or wrong if there are different conflicting rules. The only ones who claim that there is one rule are the ones which are wrong!

    https://people.math.harvard.edu/~knill/pedagogy/ambiguity/index.html

    As youngsters, math students are drilled in a particular
    convention for the “order of operations,” which dictates the order thus:
    parentheses, exponents, multiplication and division (to be treated
    on equal footing, with ties broken by working from left to right), and
    addition and subtraction (likewise of equal priority, with ties similarly
    broken). Strict adherence to this elementary PEMDAS convention, I argued,
    leads to only one answer: 16.

    Nonetheless, many readers (including my editor), equally adherent to what
    they regarded as the standard order of operations, strenuously insisted
    the right answer was 1. What was going on? After reading through the
    many comments on the article, I realized most of these respondents were
    using a different (and more sophisticated) convention than the elementary
    PEMDAS convention I had described in the article.

    In this more sophisticated convention, which is often used in
    algebra, implicit multiplication is given higher priority than explicit
    multiplication or explicit division, in which those operations are written
    explicitly with symbols like x * / or ÷. Under this more sophisticated
    convention, the implicit multiplication in 2(2 + 2) is given higher
    priority than the explicit division in 8÷2(2 + 2). In other words,
    2(2+2) should be evaluated first. Doing so yields 8÷2(2 + 2) = 8÷8 = 1.
    By the same rule, many commenters argued that the expression 8 ÷ 2(4)
    was not synonymous with 8÷2x4, because the parentheses demanded immediate
    resolution, thus giving 8÷8 = 1 again.

    This convention is very reasonable, and I agree that the answer is 1
    if we adhere to it. But it is not universally adopted.

    • […] the question is ambiguous. There is no right or wrong if there are different conflicting rules. The only ones who claim that there is one rule are the ones which are wrong!

      https://people.math.harvard.edu/~knill/pedagogy/ambiguity/index.html

      Yeah nah. Actual Maths textbooks and proofs - did you not notice the complete lack of references to textbooks in the blog? It’s funny that he mentions Cajori though, given Cajori has a direct reference to Terms #MathsIsNeverAmbiguous

    • Coreidan@lemmy.world
      link
      fedilink
      English
      arrow-up
      0
      ·
      11 months ago

      Everyone in this threading referencing PEMDAS and still thinking the answer is 1 are completely ignoring the part of the convention is left to right. Only way to get 1 is to violate left to right on multiplication and division.

      • Zagorath@aussie.zone
        link
        fedilink
        arrow-up
        1
        ·
        11 months ago

        The problem is that BIDMAS and its variants are lies-to-children. Real mathematicians don’t use BIDMAS. Multiplication by juxtaposition is extremely common, and always takes priority over division.

        Nobody in their right minds would saw 1/2x is the same as (1/2)x. It’s 1/(2x).

        That’s how you get 1. By following conventions used by mathematicians at any level higher than primary school education.

        • EndlessApollo@lemmy.world
          link
          fedilink
          arrow-up
          0
          ·
          11 months ago

          Source? I have a hard ass time believing that nobody in their right mind would do pemdas the way you’re supposed to do it xD

          • Zagorath@aussie.zone
            link
            fedilink
            English
            arrow-up
            0
            ·
            11 months ago

            The problem is that you’re thinking of BIDMAS as a set of hard rules, rather than the set of rough guidelines created in the early 20th century by one random teacher for the purposes of teaching 10-year-olds how to do the level of maths that 10-year-olds do.

            This video and this one point to some examples of style guides in academia as well as practical examples in the published works of mathematicians and physicists, which are pretty consistent.

            If you want to come up with a hard rule, doing BIJMDAS, adding in “multiplication indicated by juxtaposition” with the J, is a much better way to do it than what you learnt when you were 10. But even that’s still best to think of as a handy guideline rather than a hard and fast rule.

            • EndlessApollo@lemmy.world
              link
              fedilink
              arrow-up
              0
              ·
              edit-2
              11 months ago

              That’s cool, but still wrong :3

              No fr I had no idea that those acronyms weren’t the whole picture, I just assumed some mathematicians a long time ago decided how that stuff should be written out and that BEDMAS/PEMDAS/whatever contained all the rules in it. Thank you for the info, Idk why this isn’t more widely taught, ig because those acronyms are what all the questions are already written for? It doesn’t seem that hard to just teach it as BEADMAS, where the A refers to numbers adjacent to variables

      • Limitless_screaming@kbin.social
        link
        fedilink
        arrow-up
        0
        ·
        11 months ago

        No, you’d expect that -2^2 would equal 4, but calculators solve it as -(2)^2 not (-2)^2. But the case you mentioned is also pretty common.

        • ReveredOxygen@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          1
          ·
          11 months ago

          if you’ve touched polynomials ever, you’d expect the exponent to be before the negation. If you write x³-x² you don’t mean x³ + (-x)² = x³+x², you mean x³-(x²)